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Abstract 

This paper presents a feed-forward back-propagation neural 

network model to predict the retained tensile strength and design 

chart to estimate the strength reduction factors of nonwoven 

geotextiles due to the installation process. A database of 34 full-scale 

field tests was utilized to train, validate and test the developed neural 

network and regression model. The results show that the predicted 

retained tensile strength using the trained neural network is in good 

agreement with the results of the test. The predictions obtained from 

the neural network are much better than the regression model as the 

maximum percentage of error for training data is less than 0.87% and 

18.92%, for neural network and regression model, respectively. 

Based on the developed neural network, a design chart has been 

established. As a whole, installation damage reduction factors of the 

geotextile increases in the aftermath of the compaction process under 

lower as-received grab tensile strength, higher imposed stress over 

the geotextiles, larger particle size of the backfill, higher relative 

density of the backfill and weaker subgrades. 

Keywords: Artificial neural networks (ANNs), Regression model; Nonwoven 

geotextiles, Retained tensile strength, strength reduction factor. 
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Introduction 

Geotextiles are one of the main groups of geosynthetics that have 

been extensively applied in soil reinforcement of geotechnical 

projects such as embankments over soft subgrades, road 

construction, slopes, retaining walls and buried pipelines [1-4]. 

The primary reduction factor applied to the tensile strength of 

the geotextiles is due to installation damage. The stresses applied 

to the subgrade and the geotextile during construction may be 

much greater than those applied in service. Therefore, the 

selection of the geotextile in roadway applications is usually 

governed by the anticipated construction stress. In other words, the 

geotextile must survive the construction operations if it is to 

perform its intended function [5]. 

In visual inspection, two methods including the scanning electron 

microscopy (SEM) and naked eye inspection are applicable. 

Different modes of installation outcomes such as cutting, fraying, 

very fine-grained particles sediment in texture, fiber separation, holes 

and squeeze of geotextiles by larger soil particles are investigated. 

The results of some previous studies, observed by the visual 

inspection, are summarized in Table 1 [6-10]. 

Recently, there has been a great resurgence of research in neural 

network classifiers. ANNs are defined as computing systems made 

up of many simple, highly interconnected processing elements called 

neurons. The networks are represented by connective weights 
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between the neurons. The process of determining these weights is 

called training or learning and depends on the presentation of as 

many reliable training patterns as possible. ANNs are capable to 

perform an amount of generalization from the data entries on which 

they are trained [11]. 

Table 1. Result summary of researchers in visual inspection by using 

the SEM and naked eyes methods 

Inspection 

type 
Researcher Results 

 

 

 

SEM 

 

 

 

Greenwood and 

Brady (1992) 

Generally involves cutting, fraying (decay) and 

erosion 

Pinho-Lopes and 

Lopes (2013) 

Generally involves cutting and puncture have been 

observed.  

Rosete et al. (2013) 

Fine-grained particles sediment in texture of 

geotextile.  

The impact of larger load is more understandable. 

Carlos et al. (2015) 

Finer soils (silty sand and sandy silt) created less 

visible changes (without fiber separation, cutting 

and erosion). 

Granular soils (sand and gravel) exerted fiber 

separation and fiber-cutting. 

Naked eyes Watn et al. (1998) 

Numbers and size of the holes were measured. 

Using the lighter compactor ended in a significant 

decrease in the damage of geotextile. 

The current paper by using the experimental data investigates the 

feasibility of using ANNs to evaluate the retained tensile strength of 

nonwoven geotextiles due to the installation process. Then, 

comparisons between predicted results of the trained neural network, 

regression model and those obtained from experimental data are 

presented. Finally, to estimate installation damage reduction factor of 

nonwoven geotextiles, a design chart is established based on the 

developed neural network. 
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Description of experimental model 

A series of full-scale field tests were carried out to investigate 

installation damage of nonwoven geotextiles in unpaved roads. The 

studied parameters consisted of backfill median grain size (D50 = 3, 

6, 12 and 16 mm), two types of subgrade namely “fine-grained 

subgrade, FS” and “coarse-grained subgrade, CS”, three types of 

needle-punched nonwoven geotextiles (representatives of Classes 1, 

2 and 3 by following AASHTO M 288-08 [12]), two different 

relative densities (Dr=70%=C1 (median dense) and 90%=C2 (very 

dense). The technical properties of backfill and subgrade materials 

and also the utilized geotextiles are tabulated in Tables 2 and 3, 

respectively [13-16]. 

Table 2. Physical properties of backfill and subgrade materials 

Description 

Backfill materials Subgrade 

Sand  

3 mm 

Gravel  

6 mm 

Gravel  

12 mm 

Gravel  

16 mm 

CS 

0-2 

mm 

FS 

0-25 

mm 

Coefficient of uniformity, Cu 2.125 2.14 1.33 1.27 10.95 7.16 

Coefficient of curvature, Cc 1.19 1.08 0.95 0.96 2.86 1.55 

Median grain size, D50  (mm) 3.1 5.9 12.5 16.5 3.65 1.00 

Specific gravity, Gs 2.419 2.494 2.546 2.604 ___ ___ 

CBR soaked (%) ___ ___ ___ ___ 49 27 

Moisture content (%) Dry Dry Dry Dry 5 5 

Classification (USCS)                              SP GP GP GP SW SW 

 

Table 3. Engineering properties of the geotextiles used 

Description Test methods GT3 GT2 GT1 

Mass per unit area (g/m2) ASTM D 5261-10 292 319 508 

Grab tensile strength (N) ASTM D 4632-15a 650 800 1350 

Grab elongation (%) ASTM D 4632-15a > 50 > 50 > 50 

Trapezoidal tear strength (N) ASTM D 4533-15 310 385 600 

CBR puncture (N) ASTM D 6241-14 900 1500 2500 

Class (AASHTO M 288-08)  3 2 1 
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To simulate the installation process of geotextiles in unpaved 

roads, the geotextiles were installed over the constructed subgrades 

and buried beneath the backfill materials with desired relative 

density. To compact the backfill, a walk-behind tandem vibratory 

roller was used statically. At the end of the compaction process, the 

backfill was removed carefully to ensure that the geotextiles could be 

exhumed without any additional damage. Figure 1 shows the 

schematic representation of the test setup. 

 
(a) 

 
(b) 

Figure 1. Schematic representation of the test setup (a) plan (b) section 

A-A [17], [27] 

 [
 D

O
R

: 2
0.

10
01

.1
.2

22
86

83
7.

13
98

.1
3.

5.
3.

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 je

g.
kh

u.
ac

.ir
 o

n 
20

24
-0

3-
20

 ]
 

                             5 / 22

https://dorl.net/dor/20.1001.1.22286837.1398.13.5.3.2
https://jeg.khu.ac.ir/article-1-2655-en.html


6                                                                     Journal of Engineering Geology, Vol. 13, Winter 2020 

Results and discussions on artificial neural networks 

Inputs and outputs of the network 

In the design of ANNs structure for predicting the retained tensile 

strength of nonwoven geotextiles due to installation process, the 

input layers consists of as-received geotextile grab tensile strength 

(T0), imposed stress over the geotextiles during installation (σ), 

median grain size of backfill materials (D50), subgrade’s CBR and 

relative density of backfills (Dr). The output layer consists of the 

retained tensile strength of geotextiles. The range of input parameters 

of the data used to train the ANNs is given in Table 4. 

Table 4. Range of input parameters of the experimental data 

used to train the ANNs 

input parameters Range of parameter 

as-received geotextile tensile strength (kN) 0-1.35 

imposed stress over the geotextiles (kPa) 68-70 

median grain size of the backfill (m) 0.003-0.016 

Subgrade’s CBR (%) 27-49 

relative density of backfills (%) 70-90 

Transfer function and scaling of the training data 

For better network performance, the input and output data pairs 

were subjected to the scaling process before being used in the 

network operation. This is because the compiled raw training data for 

different parameters can vary significantly in their actual values. 

When such non-scaled data are directly used in the training 

procedure, the network could exhibit ill-conditioning. 

Also, the selection of transfer functions plays an important role in 
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ANNs problems. Among the several different types of transfer 

functions, the tan-sigmoid and pure-linear transfer functions were 

used in this study. The output of the network (retained tensile 

strength of geotextiles) is subjected to an inverse scaling to return the 

actual quantities of the output parameters. Also, the neural network 

available in MATLAB version 8.5.0 [18] was utilized to construct 

the proposed neural networks. A package of neural network has been 

used to model the problem using backpropagation neural networks 

[19]. 

Training of ANNs 

The training of the neural network is carried out using the training 

dataset. Testing and monitoring of the developed neural network 

during the training stage is performed by computing the mean 

squared error (MSE) overall training, validation and testing datasets. 

After each of the training iteration, the obtained weights are used to 

predict the corresponding retained tensile strength to the input 

parameters of the training, validation and testing datasets. The mean 

squared error was calculated for each pattern as the difference 

between the retained tensile strength obtained from the trained neural 

network and the corresponding experimental retained tensile 

strength. For neural networks, several architectures of ANN models 

were examined by varying the number of hidden layers, the number 

of neurons in each hidden layer and the training function parameters. 

The best neural network was identified after several trials to have 
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four layers. These are included with an input layer of five neurons 

(T0, σ, D50, CBR and, Dr), an output layer of one neuron retained 

tensile strength and also two hidden layers. It is noted that the 

number of neurons in each hidden layer is trained once the error of 

the network reaches a minimum value. Thus, investigations 

confirmed that the optimum number of neurons in first and second 

hidden layers was 10 neurons for predicting of retained tensile 

strength. The ANNs structure used for training of retained tensile 

strength is shown in Figure 2. It should be noted that two datasets are 

generated: one was used as a training dataset which used to train and 

another was used as a test dataset to evaluate the performance of a 

model on data not considered during the training stage. Hence, 34 

experimental data were available which among them 24 data are 

allocated (randomly chosen) for training and 10 data are used for 

testing and validating the network during the training. 

Evaluation of the training stage 

To show the advantage of ANNs as the new technology compared 

to the mathematical model, the regression analysis was carried out to 

fit the training dataset. Equations (1) and (2) illustrate dimensional 

and non-dimensional relationships to interpolate and extrapolate the 

effective parameters and retained tensile strength of the geotextiles 

(TID). According to Equation (1), the major physical parameters 

influencing the retained tensile strength (TID) can be summarized in 
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Figure 2. Schematic of ANNs structure for training of retained tensile 

strength 

as-received geotextile tensile strength (T0) in Newton, transferred 

stress over the geotextiles level during installation (σ) in Pascal, 

median grain size of backfill materials (D50) in meter, relative density 

of backfills (Dr) in term of percentage and subgrade CBR in term of 

percentage. Equation (1) comprises 5 parameters which two of them 

have fundamental dimensions (i.e. length and force). Therefore, 

Equation (1) can be reduced to 3 independent parameters and 

substituted with Equation (2). 

        ,  ,    ,    ,                         (1) 
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 ,   ,            (2) 

To determine the best-fitted equation, great numbers of linear and 

non-linear regression models were examined to select the best subset 

of predictors. Among all possibilities, natural-logarithm function 

(Eq. 3) was selected to estimate retained tensile strength, resulting in 

the maximum value of the coefficient of determination; R
2
 and 

minimum value of mean squared error. 

                   
  

    
                 

                                                 (3) 

Figure 3 comprises the obtained retained tensile strength from 

experimental data and those obtained from the trained neural network 

and regression model. It is shown that there is no serious out-layer 

point around the 0% error line for ANNs compared to the regression 

results for retained tensile strength. Table 5 gives statistical 

parameters to evaluate the performance of the trained ANNs and 

regression method for retained tensile strength. The absolute average 

percentage of error (eave) in the estimation of retained tensile strength 

was 0.12% with the trained ANN and 4.99% with the regression 

method, whereas the maximum percentage of error (emax) using the 

trained ANN and the regression method were 0.87% and 18.92%, 

respectively. The value of R
2
 for the ANN is greater than that of 

obtained from the regression method for retained tensile strength as 

indicated in Table 5. For example, the obtained values of R
2
 indicate 

that the model as fitted explains 99.99% and 97.61% of the 
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variability in retained tensile strength for the ANN and regression 

method, respectively. Also, the value of MSE for the ANN is less 

than the regression method. Besides, these statistical parameters 

show that the predictions obtained from both the trained ANN and 

regression method are good agreement with experimental results, but 

trained ANN are better than those obtained from the regression 

method. 

 

Figure 3. Comparison of trial ANNs and Regression predicted values 

with experimental results 

Table 5. Statistical parameters for measuring the performance of the 

trained ANNs and regression model 

Parameter Method eave emax R2 MSE 

Retained tensile 

strength  

ANNs 0.12 0.87 0.9999 0.00000255 

Regression 4.99 18.92 0.9761 0.002358 

eave, the absolute average percentage of error in the predicted values; emax, the 

maximum percentage of error in the predicted values; R
2
, the coefficient of 

determination; MSE, the mean squared of error. 
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Verification of the trained model 

For verification of the proposed model, the model has been 

evaluated with 10 additional experimental data that were not used in 

training the model. Table 6 demonstrates statistical parameters to 

investigate performance of the trained ANNs and regression method 

for retained tensile strength. The values of statistical parameters (eave, 

emax, R
2
 , MSE) calculated for the ANN and the regression model are 

close to each other, as indicated in Table 6. By comparison of the 

estimated statistical parameters for the ANN and regression models 

for all data used in training and test stages, it can be concluded that 

the predicted value of retained tensile strength using the trained ANN 

and the regression method are good agreement with experimental 

results. Furthermore, it is well understood that the ANN predictions 

were closer to the experimental results than those for the regression 

model. 

Table 6. Statistical parameters for measuring the performance of 

the ANNs and regression model for data not used in training stage 

Parameter Method eave emax R
2
 MSE 

Retained tensile 

strength  

ANNs 3.86 7.3 0.98 0.00119 

Regression 2.07 5.93 0.99 0.00095 

eave, the absolute average percentage of error in the predicted values; 

emax, the maximum percentage of error in the predicted values; R
2
, the 

coefficient of determination; MSE, the mean squared of error. 
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Limitation and applicability of the proposed model 

ANNs offer a fundamentally different approach to modeling 

different engineering problems. But, for predicting the model, the 

conditions and limitations of each problem should be considered. To 

clarify the proposed ANNs, some points are necessary to discuss as 

follows: 

The ANN model trained by experimental data is established for 

only one type of roller (as compacting machinery), one type of 

geotextile from a manufacturing process point of view (needle-

punched nonwoven) and similar backfill thickness. Hence, it should 

be noted that the effect of some other parameters, which have not 

been investigated, should be considered. Thus, the proposed neural 

network can be applied by considering the above limitations. 

The ANNs database is dynamic; therefore, the network will be 

able to access a richer training set as the experimental or fieldwork 

continues. More complex path experimental or field tests on various 

conditions such as different rollers, various types of geotextile and 

backfill thickness to expand the capabilities of neural a network 

model can be very useful. 

The results indicate that there is a good agreement between 

predicted and experimental results in the above range of input 

variable parameters. But it is important to note that complete 

agreement between the experimental trends and those inferred from 

the model should not be expected. This refers to the uncertainty and 

inaccuracy of the experimental data. 
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It can be expected that, with an increase in the size and diversity 

of the database for the training of the ANNs, it would be possible to 

obtain more robust models for the prediction of retained tensile 

strength, studying the effects of input variable parameters in a wider 

variation range. 

Design chart results and discussion 

Based on the developed neural network, the values of TID were 

obtained and then, by dividing them to the corresponding T0, the 

values of installation damage reduction factor of geotextiles (RFID) 

were determined. Thus, a design chart has been produced and shown 

in Figure 4, to estimate installation damage reduction factor of 

geotextiles (RFID) respect to the variation of the studied parameters. 

Also, it should be noted that in ratio of σ (D50 Dr)
2
 / T0, σ is 

transferred stress at the level of geotextile in (Pa or kPa); D50 is 

medium grain size of the backfill in (m); Dr is relative density of the 

backfill in percent and T0 is as-received grab tensile strength of 

geotextiles in (N or kN). 

Accordingly, reduction factors due to the installation of 

geotextiles in the backfill were obtained 1~1.42. This range of values 

is in the line with that stated in FHWA-NHI-10-024 [20], suggesting 

RDID=1.1~1.4 for nonwoven geotextiles in backfill with maximum 

grain size 20 mm. As can be seen, the transferred stress at the level of 

geotextile can be the resultant of the backfill’s weight and stress 

propagated by the compactor energy, having a direct role in 
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Figure 4. Design chart for tensile strength reduction factor due to 

installation damage 

installation damage. Consequently, it is suggested that in 

constructions, lighter compactors and a thicker cover of the backfill 

materials over the geotextile should be utilized, as much as possible 

[6, 7, 10, 21, 22, 23, 24]. Also, increasing the relative density of 

backfill materials increased the installation damage reduction factor 

and it can be concluded that the variations of installation damage 

reduction factors of geotextiles due to transferred stress and relative 

density are the same order. Increasing the soil particle size intensifies 

the installation damage of the geotextiles. Increasing the grain size 

could increase the chance of stone-stone interactions, tending to 

transfer more stress onto the geotextiles. Expectedly, geotextile class 

1 due to its greater thickness, gained less impact from the installation 
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process. Therefore, using high-survivability geotextiles (i.e. class 1 

per AASHTO M288-08 [12]) in backfills containing large particle 

size is highly recommended. In this regard, FHWA-NHI-10-024 [20] 

focused on the grain size of backfill and geotextile’s type to suggest 

reduction factor due to installation damage. Furthermore, the results 

confirm the continues degradation of geotextiles in the aftermath of 

being in the neighborhood of weaker subgrades. Weak subgrade 

directly affects the amount of extension in the geotextile layer under 

imposed stress. It means that reduction in CBR of the subgrade 

ended in the occurrence of more settlements beneath the geotextile, 

exerting more tension through its plane and thereby causing severe 

damage. FHWA HI-95-038 [5] recommends that higher survivability 

geotextiles should be used when the subgrade has low shear strength. 

 

Summary and conclusion 

The selection of the geotextile in roadway applications is 

usually governed by the anticipated construction stress. Since the 

tensile strength of reinforcements is a key parameter in the 

performance of reinforced soil [25-27], therefore, the estimation of 

the reduction factor of tensile strength due to installation damage 

is essential. The current paper, by using the experimental data, 

investigates the feasibility of using ANNs to evaluate the retained 

tensile strength of nonwoven geotextiles due to the installation 

process. The results of the study, as applied to the geotextile 
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installations, can be summarized as follows: 

The comparisons of the statistical parameters of the ANN and 

regression for all data used in training and test stages imply that the 

predicted value of retained tensile strength using the trained ANN is 

more adjustable than the regression model. 

The strength reduction factor is increased owing to higher backfill 

compaction. This confirms the continued weakness of geotextiles in 

the aftermath of transferred stress intensification. 

Increasing the soil particle size intensifies the installation damage 

of the geotextiles. Increasing the grain size could increase the chance 

of stone-stone interactions, tending to transfer more stress onto the 

geotextiles.  

Using geotextiles with higher as-received grab tensile strength 

(increasing the geotextiles Class from 3 to 1) results in a decrease of 

installation damage. 

The installation damage of geotextiles is more pronounced as the 

subgrades’ CBR increases, probably due to its direct effect on the 

amount of extension in the geotextile layer under imposed stress. 

Nomenclature 

Coefficient of uniformity Cu 

Coefficient of curvature  Cc  

Median grain size D50 (mm) 

Specific gravity of soil Gs 

Coarse-grained subgrade CS 
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Fine-grained subgrade FS 

As-received Grab tensile strength of the geotextiles T0 

Transferred stress at the level of geotextile σ 

Backfill’s relative density Dr 

Subgrade’ CBR CBR 

Installation damage reduction factor of geotextile RFID 

Retained Grab tensile strength of the geotextiles TID 

Dimensionless parameter T0 / (σD50
2
) 
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